Avatar

“We do not remember days; we remember moments.” Those words from Cesare Pavese have been one of my personal favorites. Interestingly, we remember these significant, or “flashbulb” moments in our lives in vivid detail. We remember exactly where we were, whom we were with, what we felt, or even what we were wearing. One of my flashbulb moments was 20 years ago in 1999 when Brandi Chastain made the winning penalty shot during the Women’s World Cup in spectacular fashion. At the time, I was coaching my oldest daughter’s soccer team. That victory felt like the start of something big. It had this wonderful feeling that women’s soccer was going to change for the next generation.

I believe we are having one of those “flashbulb” moments right now in the networking industry. Years from now, we will look back and remember this moment in time. Because today, Cisco revealed breakthrough innovations so significant and expansive, they will change the economics of the Internet for the next generation.

Significant technological innovations have defined human history. The steam engine replaced muscle with machinery. With the telegraph, communications exceeded the speed of animals. And, with the Internet, information was digitized, and global communities were created.

IP infrastructure connects our world. The Internet has profoundly changed the way we work, live, play, and learn – anything, anywhere, anytime. The results are astounding. Our ability to connect and collaborate has caused society to evolve faster than ever before. We have made more progress in mitigating wars, preventing famine, and curing disease in the last 35 years than in the previous 35,000.

Today is the moment when we enter a new phase of the Internet. Technologies such as 5G, IoT, 3D printing, and advanced analytics are connecting more, increasing participation, and pushing digitization further. And as a result, industries like mining becomes safer, agriculture becomes more efficient, transportation becomes autonomous, and healthcare becomes wellness-driven, not crises-driven. The possibilities are endless. And service providers will be the catalysts for changing economies, countries, and the world because at the very heart of this next transformation is the network infrastructure that makes it all possible.

The route to success for service providers is not straightforward or simple. There are fundamental business challenges. Networks, which are already huge, must become even more massive. And to succeed, service providers need to transform not only their infrastructure but their operations and their business models as well.

Our current network economics will begin to break as we evolve to operate at massive scale. The physics behind our past achievements are already showing signs of slowing down, while traffic growth continues to accelerate. So far, performance increases have helped to reduce the cost of traffic at about the same rate that traffic has increased. $1 in CapEx today does eleven times the work that it did just a few years ago. However, continuing with the status quo will likely lead to a significant increase in CapEx unless we reinvent the rules.

The cost of operations must be reduced too. Today, many operators spend almost $5 in OpEx for each $1 of CapEx. With current network management technology, that situation is likely to get worse, as the larger a network becomes, the more inefficient it is to operate unless we reinvent the rules.

With innovation from a technology pioneer that spans multiple dimensions across silicon, optics, software, and systems to create entirely new network architectures, this is that “flashbulb moment when Cisco is redefining the economics of the Internet.

Silicon

Redefining the economics of the Internet has to begin at the foundation. The very “DNA” of the Internet itself. The engine to a car. Silicon.

Moore’s law is stalling. While the rest of the industry slows down from the physics of traditional approaches, we have unlocked new dimensions of innovation. By rethinking silicon design entirely, we can deliver industry-leading performance today and create a “fast lane” to the future. We are excited to introduce our groundbreaking programmable silicon architecture, Cisco Silicon One. The first member of this new family, Cisco Silicon One Q100, delivers over twice the network capacity and twice the power efficiency over any other silicon. It is the first routing silicon to break through the 10Tbps barrier without compromising carrier-class capabilities (e.g., feature richness, large buffers, advanced programmability). And Cisco Silicon One is available right now; we won’t make you wait for it.

The innovations in Cisco Silicon One bring significant value to lowering operational costs as well. In the past, multiple types of silicon have been used across a network and even within a single device. Feature development was inconsistent. Telemetry varied dramatically. Operators had to spend too much time and effort coordinating and testing parity of new features across the network. Now, a single silicon architecture can serve different market segments, different functions, and various form factors for a unified experience that dramatically reduces costs of operations and time-to-value for new services.

Optics

Optic costs matter. At lower interface speeds, optics were roughly 10% of the total solution cost, and systems accounted for the remaining 90%. At 400G and beyond, that equation flips. Optics become the dominant part of the total spend. This dynamic needs to change, a long-term strategy is required to make it easier to deploy both short-reach and long-haul optics solutions.

Cisco is investing in technologies like silicon photonics to accelerate the adoption of 400G and prepare for the future beyond 400G. Our recent acquisition of Luxtera brings a highly automated wafer-scale manufacturing process to Cisco that improves production volumes and quality.

Software

If silicon is the engine of a car, the software is the steering and suspension to enable phenomenal handling. Even the world’s most advanced silicon can be wasted without the right software to steer correctly and operate smoothly. Imagine the ride at 400 km/h without proper steering and suspension. Any unfortunate bump or turn could be disastrous.

To redefine the economics of operating a network, the Internet of the future needs software that recognizes operations is just as important as functionality. Cisco IOS XR7, the new release of our industry-leading Networking Operating System (NOS), has been overhauled to prioritize operations – with simplicity and automation. It has been simplified to reduce required resources, install procedures, and deployment efforts (e.g. zero-touch).

Most notably, XR7 has been completely modernized. XR7 is the first-of-its-kind cloud-enhanced NOS. XR7 can leverage new cloud-delivered SaaS deployment models from Cisco Crosswork Cloud to enhance operations. Now, operations teams can optionally consume insights and analytics as a service for agile, proactive management without the risks and resources of traditional models.

Systems

Now, we get to the “car” itself. With new silicon and new software, we can build new systems that have the performance, efficiency, and operational improvements to meet the next wave of traffic demand. Today, we introduce the Cisco 8000 series routers, new systems optimized for high-density 100GbE and 400GbE, including:

  • 2 fixed platforms – providing 10.8Tb/s of network bandwidth starting at I RU
  • 3 modular form-factor platforms – 8 slots, 12 slots and 18 slots delivering up to 115 Tbps, 172 Tbps and 260 Tbps respectively

These are systems designed without compromise and with a very bright future. No oversubscription. Full fabric redundancy. Power efficiency down to as little as 4 Watts/100Gb. That is 1/4 to 1/5th the amount of power that our nearest competitor uses. And a “clean sheet” design allows us to grow into 1.6 TbE interfaces and beyond.

Wait, there’s more. The most distinctive characteristic of the Cisco 8000 relates to trustworthiness. Networks are critical infrastructure as they connect industries, finance, utilities, and governments and service providers must maintain the integrity of their infrastructure. The chain of trustworthiness begins by knowing whether or not the hardware and software are authentic. The Cisco 8000 Series are equipped with tamper-proof hardware that serves as the root of trust to prevent any modification of the hardware or software. Next, the NOS, XR7, works with Cisco Crosswork Cloud to provide real-time visibility and control to deliver the trustworthy networks that the Internet requires.

Architectures

To grow to the size and capabilities that the next generation will demand, the Internet requires fundamental changes. We reinvented from the ground up, the DNA, the performance curve, operations, trust, and even the rules. We reinvented what Cisco does best.

And these reinventions will allow us to build the future on new architectures – converged, cloud-enhanced, and trustworthy. We that work in the networking industry will hopefully remember this moment years from now. I hope it is just as vivid a memory as Brandi Chastain’s winning goal 20 years ago.